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Introduction

Whether we are attempting to do profitable manufacturing or reputable science, our
goal is the same: to predict the future. As the outputs of a company's manufacturing
operations become more and more predictable, it gets better and better at writing
contracts that grow the balance of revenues and costs in a competitive marketplace.
Likewise, as the initial predictions of an R&D team's latest model are validated by
subsequent experimentation, they become more willing to bet more of their time,
money and reputation on the model's more far-ranging predictions.

Among both scientists and engineers, there is one prediction that is so obvious it is
frequently unspoken and so foundational it is frequently untested: the prediction that
two people independently executing the same procedure should get the same result.
To be sure, scientists will often try to reproduce the results of a new journal article
before attempting to extend it, and corporate product managers will usually budget
for time-consuming comparability testing when doing tech transfer or scaling up a
manufacturing process to a new site. Yet these same people will implicitly assume that
Joe's and Jane's results are comparable when they do R&D in the same building -
without sufficient evidence to do so.

There are three distinct ways in which Joe and Jane can get different results in the lab
despite receiving the same training and using the same equipment to execute the
same protocols:

1) They could execute the same experiments with different means.
2) They could execute the same experiments with different standard deviations.
3) They could generate outlying results with different frequencies.

Although most managers - and the most frequently used statistical methods - are
focused on measuring differences in means, a statistically significant difference in

any of these dimensions can present an opportunity to learn something valuable. To
be clear, there is generally little value (and usually negative value) in thinking we've
learned, "This researcher is better than that one.” Rather, the valuable thing we learn is,
"There must exist some specific root cause that was too easily forgotten from our pro-
tocol or our training - or completely overlooked by it.” By investigating and successfully
identifying the root cause of any statistically significant difference among researchers,
at minimum we increase the likelihood that the protocols we share with the scientific
community or our manufacturing partners will readily reproduce the outcomes we
have observed in our own workplaces. These insights can also accelerate our R&D
progress by increasing the signal-to-noise ratios of all subsequent experiments we do.

Although the specific root causes and the ways they are investigated will vary from lab
to lab and from project to project, the statistical methodologies we might use to deter-
mine if there are researcher-related root causes worth investigating are fundamentally
the same. The rest of this white paper describes a variety of ways we can learn more
from our positive controls by testing for statistically significant differences in either the
mean, standard deviation or outlier frequency among two or more researchers doing
experiments in an industrial or academic R&D setting. This article assumes the reader has
a Wikipedia-level conceptual understanding of statistical hypothesis testing, confidence
intervals, multivariate linear regression, design of experiment methodologies and
statistical process control.
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Requirements

Although our ultimate goal is to build models that predict a future that can be
precisely reproduced by anyone, anywhere and at any time, the discovery that
today’s models would predict a persistent difference between Joe's and Jane's
outcomes can serve as an important step on the path to achieving that objective.
Of course, we can't test the hypothesis that their data is comparable - or the
hypothesis that we might derive a valuable insight from their lack of comparability
- until we create the opportunity to do so. The two most important requirements
for performing such tests are:

(1) There must be a column in our data table that documents which researcher
generated which outputs.

(2) We must have access to statistical software such as JMP® to analyze the data.

When there is no record in our data tables of which researchers executed which
specific aspects of each experiment, we are implicitly assuming that everyone's
data is comparable and that there is nothing of value to learn by testing for
differences among them. Not only is this assumption frequently wrong, but it
opposes everything else we do as researchers to determine which factors influence
our experiments and by how much. Perhaps more importantly, as a practical matter,
whenever the “Researcher” column explains a statistically significant fraction of the
variation in our data tables, including that term in our multivariate models improves
the precision with which we can measure its other coefficients (for examples, see
Parts 2 and 3 to follow).

When we have access to good statistical software, we can even detect a persistent
offset between researchers without replicating a single condition in our experiment.
Nevertheless, many of us have made a habit of running “positive controls” alongside
the truly novel conditions we test in each experiment. We even take pride in our
commitment to carefully designing and executing the positive controls for each
experiment we do. However, if we are not compiling the data from weeks and
months of these positive controls to look for statistically significant correlations
among the researchers who ran them, we are not extracting nearly as much value
from them as we could.

Part 1 of this paper uses the example of a single, oft-repeated positive control to
review foundational concepts and procedures for measuring the effect of the
researcher on the mean, standard deviation and outlier frequency of an experiment.
Parts 2 and 3 demonstrate how the same tests can be run even when we change
what we run as our positive control from time to time. In addition to highlighting
some underutilized features of JMP, these sections highlight some underappreciated
trade-offs we make whenever we choose to update which conditions we run as
positive controls.



Guides and Commentary

Part 1: How to use JMP to test for differences between researchers repeatedly
running the same positive control

Imagine that over a three-month period, Joe and Jane independently run the same
positive control a total of 50 times. If the data for these repeated controls is compiled
into a single table, such as the sample data table provided with this article, we can test
for evidence of a statistically significant difference in Joe's and Jane's mean outputs
using the Fit Y by X platform in JMP:

® 8 Fit ¥ by X - Contextual
Distribution of Y for each X. Modeling types determine analysis.
Select Columns Cast Selected Columns into Roles Action
=13 Columns ¥, Response | . Measured Output oK

4 Week optional
4 Experiment Cancel
& Researcher
& True Signal
4 HaMoi MNoise X, Factor il Researcher
<4 Measured Output optional Remove
& Outliers
& Version L Recall
A Version Output jonal
& Version Outliers Btk it Help
& Many Versions.
Fl Mﬂ Versions Output Weight | RtGIN NS
i Many Versions Outliers r -

Freq cptional numeric

Oneway
Bivariate Oneway
‘L B

Logistic Contingency

By | optional

A i el
v = Onawau Analueie nf Maacivad Output By Researcher
Quantiles
v Means/Anova/Pooled t | Shows or hides a t test, an ANOVA, and a
means report.
Means and Std Dev )

Oneway Analysis of Measured Output By Researcher

110

8

Measured Output
g8
® e . L .@ eosemo

Jane Joe
Researcher

Oneway Anova
Pooled t Test

Joe-Jane

Assuming equal variances

Difference 1.8338 tRatio  1.303654

Std Err Dif 1.4067 DF 48

Upper CLDif  4.6622 Prob > [tf| 0.1986

Lower CLDif -0.9945 Prob >t  0.0993

Confidence 0.95 Prob <t 0.9007 -4 2 0 2 4

If we take this analysis at face value, we might conclude from its two-tailed p-value
(0.1986) that Joe and Jane are generating comparable data with their independent
experiments. However, if this is the only way that we analyze the data, we will overlook
many valuable stories that these positive controls have to tell.

Afundamental assumption of this one-way analysis is that the process variation around
Joe's and Jane's means is normally distributed - i.e., random. However, it appears
in the data visualization above that Joe's data might not be normally distributed.
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Specifically, it appears as though there may be three or four outliers (measured output
< 95) that are not representative of the positive controls Joe ran on 21 other occasions.

If indeed there is evidence for nonrandom variation in anyone'’s data, we should tag
those outliers and then revisit the test for means using only the normally distributed
subsets of their data.

We can use the Distribution platform to test for both normality and outliers:

& & Distribution
[The distribution of values in each column
Select Columns Cast Selected Columns into Roles Action
=13 CoTve Y, Columns |  Measured Output oK
A \Week optional
4 Experiment Cancel
i Researcher

& True Signal . —— -

A Measured Output

& Version Recall
i O =
i Version Outliers optional Help

d Many Versions
A Many Versions Output

i Many Versions Outliers

Remave

Histograms Only

v = Distributions Researcher=Jane 1 Jane v = Eittard Narmal
v = Mansurad Nidnar 2 Jane Diagnostic Plot

Display Options > 3 Joe ! ¥ Density Curve |
Histogram Options > 4 Jane Lower 95% Upper 95%
Normal Quantile Plot 5 Joe Fix Parameters 98.557475  100.54394

+ Outlier Box Plot 6 Jane Quantiles 1.9285258  3.3944904
Quantile Box Plot 7 Joe
Stem and Leaf 8 Joe
CDF Plot 9 Joe
Test Mean 10 Jane
Test Std Dev 11 Joe
Test Equivalence 12 Jane
Confidence Interval > 13 Joe
Prediction Interval 14 Jane
Tolerance Interval 15 Jane
Capability Analysis 16 Jane

Distributions Researcher=Jane

Measured Output

L ] Fitted Normal
== | Goodness-of-Fit Test

Shapiro-Wilk W Test
w

0.968765 05916
Note: Ho = The data is from the Normal distribution. Small p-

values reject Ho.
o6 90 100 . m.z . 104
Normal(99.5507,2.45805)
Distributions Researcher=Joe
Measured Output
— Fitted Normal
E==F ] Goodness-of-Fit Test
Shapiro-Wilk W Test
W Prob<W

0.891882  0.0145"

Note: Ho = The data is from the Mormal distribution. Small p-

values reject Ho.

85 20 95 100 106 110

—— Normal(101,385,6.70562)




Whereas the p-value for Jane's data is >0.05 (0.5916), the p-value for Joe's data is
<0.05 (0.0145). In other words, there is evidence that Joe sometimes runs his positive
controls in a fundamentally (and measurably) different way than he usually runs his
positive controls.

The box-and-whiskers plots adjoining the histograms above would have automatically
flagged as outliers any data that is either < 1st quartile - 1.5*(interquartile range) or

> 3rd quartile + 1.5*(interquartile range). In this case, none of Joe's or Jane’s data is
flagged as outliers, because none of their data meets these criteria.

An alternative test for outliers can be performed using control chart logic. Control
charts are constructed by coupling a plot of repeated data versus time (i.e., a run
chart) to an algorithm for testing each individual replicate for evidence of nonrandom
variation. A run chart becomes a control chart when the outputs of this algorithm are
superimposed as two red lines called control limits, each equidistant from a third line
representing the output mean. Each individual point that falls outside the control limits
flags evidence of nonrandom variation in the illustrated data.

We can plot Joe's and Jane's time-ordered data as a control chart using JMP software's
Control Chart Builder by clicking and dragging Measured Output into the Y region of
the initially empty canvas:

v ~ Control Chart Builder
Undo Start Qver Done By Individual & Moving Range chart of Measured Output
Select Columns.

> 13 Golumns

A Weak

4 Exparimant 10 »

& Ressarcher 2 b L1
& True Signal .

4 Randam Noise

4 Measured Output
e Dutiers

i Vrsion

4 Varsion Output
& Varsion Qutliers
& Many Varsions

4 Many Versions Output ¢

Massumd Output
g
-
<
.
r
e

®
-

Shewhart Variables B New Y Chart * .

In this case, the algorithm that is used to calculate control limits flags two of 50 positive
controls as statistically significant outliers.

Although control chart logic is more sensitive than box-and-whiskers logic for detecting
outliers in this data set, it is notable that we are still detecting only two of the three or four
points that we had hypothesized as outliers above. Have our eyes deceived us? Or do
our statistical tests for nonrandom variation have a substantial false negative rate?

It's important to recognize that most outlier tests do, in fact, suffer a substantial false
negative rate, because the presence of nonrandom variation in a data set generally
inflates whatever estimate of the normal component of variation is used to test for
statistical significance. To mitigate these false negative risks, it is thus wholly appropriate,
after detecting the first statistically significant outliers, to iteratively filter and re-test our
data for additional outliers.!

To be clear, any approach to reduce false negative risk increases false positive risk to some degree. Since those risks are
generally asymmetric, it is important to determine on a case-by-case basis which risk is more costly in a given circumstance.
In this case, the false negative risk is that we infect future data with preventable errors for a potentially unbounded amount
of time, whereas the false positive risk is that we initiate an unnecessary - but time-bounded - investigation into “observed”
differences between researchers. Reasonable people can disagree about how to weigh these risks, but this author has
observed that most researchers substantially underweight the first risk and substantially overweight the latter.
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We can do this iteration without leaving the Control Chart Builder in the following
manner. First, we select the two outliers in the Individual chart, right-click and select

"Name Selection in Column...":

v = Control Chart Builder
Undo  StartOver  Done By Individual & Moving Range chart of Measured Output
Select Columns v
13 Columns Points =
: wE’e;;imem 110 Limits > %
i Researcher Add Dispersion Chart ot 6 ey .
4 True Signal il Set Subgroup Size "\ . °
e g o amings e
& Outliers ° § . s o L Remove Graph ¥yl o
i Version s J ¢ -
4 Version Output g o/ D  Row Colors >
& Version Outliers = i = Graph > Row Markers >
& Many Versions Customize... Row Hide and Exclude
2 IMany vezionz Oulput Edit »  RowExclude
% Row Hide
Shewhart Variables New Y Chart b . Row Label
85 Row Editor
¥ [alniaii] s - E 15 Select Matching Cells
Sistletia indracdal § o e Name Selection in Column...

We can create a new column called "Outliers” with values of "yes” for the two selected
points and “no” for the 48 unselected points:

a column.

Column Name |Outliers

Selected yes

Unselected

no

Cancel

Label the currently selected rows and save the value(label) in

OK

Next, we add a Local Data Filter to our Control Chart Builder:

v =rantral Chavk Ruildar
- v/ Show Control Panel
| Show Limit Summaries
Get Limits
v Show Excluded Region
Set Subgroup Size
Save Limits
Save Summaries
v Include Missing Categories

Local Data Filter

>




By unchecking the "Show” box and checking the “Include” box, the Individual Chart will
continue to display all 50 measurements while its control limits are recalculated using
only the subset of those data where Outliers = "no":

¥ ~ Local Data Filter ~ ~ Control Chart Builder
Clear Favorites™ Undo  StartOver  Dane By Individual & Moving Range chart of Measured Output

Show Include Select Columns

48 matching rows ~13 Golumns.

Inverse 2 Weok
= [1] Outliers (2) :;::s"'"ﬂ::
T s ._Tm:g'i;"al

4 Random Noise

AND OR 4 Measured Output

& Outliers

& Version

4 Version Output

i Version Outliers

& Many Versions

4 Many Versions Output

Shewhart Variables New ¥ Chart

Since the first two outliers are no longer contributing to this control chart’s estimate
of the normal component of its variation, a third measurement is now flagged as an
outlier. We can again use the “Name Selection in Column...” feature to document
this row of our data table as an outlier. However, if we have selected only this third
measurement as we do so, it is critical that this time we do not write any values to the
unselected data:

Name Selection in Column...

Label the currently selected rows and save the value(label) in

a column.

Column Name |Outliers |
Selected yes I
Unselected |

Cancel OK

If we write "no” in the "Unselected” field when only one row is selected, this action will
overwrite the values of "yes"” that had been written to the two rows that are no longer
selected. (Alternatively, we must select all three rows before writing “no” in the
“Unselected” field.) When we click "OK," the Individual chart will update automatically,
as it now removes all three "yes” rows from the calculation of its control limits:

v ~Local Data Filter ~ ~ Control Chart Builder
Clear Favorites™ Undo Start Over  Done By Individual & Moving Range chart of Measured Output

Show B Include Select Columns.

47 matching rows ~/13 Columns

Inverse 4 \Week
~ 1] Outliers (2) 4 Experiment
i Researcher
yes & True Signal
4 Random Noise
AND OR 4 Measured Output

& Outliers

i Version

4 Version Qutput

& Version Outliers

& Many Versions

4 Many Versions Output

Shewhart Variables a New Y Chart
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At this point no other rows of our data table are flagged as outliers. If we color the data
in our control chart by researcher...

Rows Cols DOE Analyze

Markers

Row Selection

Clear Row States
Color or Mark by Column...
Row Editor

we see that all three outliers are associated with Joe:

v ~'Local Data Filter + ~ Control Chart Builder
Clear Farvoritas™ Undo Start Over Done By Individual & Moving Range chart of Measured Output
Show Include Select Columns.
47 matching rows ~13 Columns
Inverse 4 Week 10
~[1)Outiers (2) A e l f\ NT‘ 1
| __ro [T ”me‘eg‘:m 105 ." p \ | \’ i
4 Random Noise ,.N ,-’\( » X/‘ | I\
AND  OR s i g s e Y% | ] K 0 AR
& Outliers o [V N Vol l ‘\j | | i
& Version O u‘ V ' |/ | 1
4 Version Output g | | / ‘l | \|
i Version Outliers £ o5 | | ¢ | Q
& Many Versions { | { \
-4 Many Versions Output iz L} Il
s0- ““' |IF ]
Shewhart Variables New ¥ Chart |

We also see that the fourth suspected outlier, while perhaps not an outlier relative to all
the positive controls, may be outlying relative to Joe's positive controls. We can test this
hypothesis by dragging Researcher into the Phase region of the Control Chart Builder:

¥ = Local Data Filter ¥ ~ Control Chart Builder
Clear Favorites™ Undo  StartOver  Done By Individual & Moving Range chart of Measured Output
Select Columns. Researcher
show @ Include Jane Joe
47 matching rows ~13 Columns
Inverse 2 Wesk
=[1] Outliers (2) 4 Experiment 110 w
& Researche
[__ro [T & Troe Signal \ | l\ T
AND  OR Pyl 8% 1 Iy —
atiec ot \ | 1]
= el AR [
4 Version Output \ \/ T |
i e / W
4 Many Versions = | e ! |
4 Many Versions Output | | | I .
] '\/ I\I y
Shewhart Varisbles New ¥ Chart il
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When we tag this fourth point as an outlier, yet again some of Joe's positive controls
fall outside the recalculated control limits (one above the upper control limit, one
below the lower control limit):

v ~'Local Data Filter + ~ Control Chart Builder
Clear Favorites™ Undo  StartOver  Done By Individual & Moving Range chart of Measured Output
Select Columns Researcher
Show @ Include Jane Joe
486 matching rows 113 Columns.
Inverse 2 ook R Vadlh
" I\ L]
= 1] Outiiers (2) = E"“":zm: [ 3 ‘ ‘I |
ETEE e 4 True Signal ]
|
4 Random Noise 1Al ||
AND OR 4 Measured Output |
& Outliers ; o
4 Version ‘ [ Il
4 Version Output | I
& Version Outliers | ‘ |
& Many Versions |
4 Many Versions Output I
Shewhart Variables New Y Chart

However, it would seem inappropriate to call these fifth and sixth rows of the data table
"outliers,” as both seem so similar in magnitude to so many more of Joe's positive
controls. This important observation illustrates that the fundamental purpose of control
chart logic is to detect statistically significant evidence of nonrandom (“assignable
cause”) variation, not “outliers” per se. In this case, we can see that the reason some
data fall outside the recalculated control limits is that Joe's positive controls seem to
have been trending (nonrandomly) higher over time.

We can test this hypothesis using the Fit Y by X platform by filtering to the more
representative subset of Joe's data (Researcher = "Joe” and Outliers = "no”) and fitting
aline to a plot of "Measured Output” versus "Experiment”:

Bivariate Fit of Measured Output By Experiment

110.0

107.5

o
L)
o

Measured Output
8
5]
o

100.0
97.5
95.0 : : : — —
0 10 20 30 40 50
Experiment
Linear Fit
Measured Output = 97.986448 + 0.2247982*Experiment
Parameter Estimates
Term Estimate Std Error tRatio Prob>|t| Lower 95% Upper 95%

Intercept 97.986448 0.937967 104.47 <.0001" 96.015852 99.957044
Experiment 0.2247982 0.031388 7.16 <.0001" 0.1588547 0.2907416

Sure enough, the trend in Joe's positive controls is quite statistically significant
(p < 0.0001), with an estimated rate of 0.16 to 0.29 units per experiment. For
comparison, the equivalent fit to Jane's positive controls has p = 0.9675, with an
estimated rate of -0.07 to 0.07 units per experiment (not shown).
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Are Joe's four outliers revealing a failure mode of our standard operating procedure
that is specific to Joe? Or might we expect Jane's data to exhibit the same failure mode
with a similar frequency in a larger data set? We can use the Fit Y by X platform to test for
statistically significant differences in Joe's and Jane's outlier frequencies by attempting

to explain the nominal variation in the Outliers column as a function of the nominal
variation in the Researcher column:

e Fit Y by X - Contextual
Distribution of ¥ for each X. Modeling types determine analysis.
Select Columns Cast Selected Columns into Roles Action
A tolNe Y, Response | ik Outliers OK

4 Week optional
4 Experment Cancel
& Researcher
& True Signal
A Hﬂnd?;rgn Moise X, Factor '8 F_hsseﬂmhsr
A Measured Output optional Remove
& Qutliers
il Recall
4 Varsion Qutput ol
i M i
e Vany Versions Output weight | [optonainumerc |
& Many Versions Outliers

1 =
al Z R

Bivariate Oneway
s
ald &
Logistic Contingency
A i all

By default, JMP runs two different chi-square tests, denoted “Likelihood Ratio”
and "Pearson”:

Contingency Analysis of Outliers By Researcher
Mosaic Plot
1.00

0.75

0.25

0.00
Researcher
Tests
N DF  -LoglLike RSquare (U)
50 1 3.1249996 0.2242
Test ChiSquare Prob>ChiSq
Likelihood Ratio 6.250 0.0124*
Pearson 4.710 0.0300"

In this case, both p-values are less than 0.05, but greater than 0.01. Although there
is enough evidence to conclude that Joe generates outliers with greater frequency
than Jane, we should remain open to the possibility that there is no actual difference
between them.

12



Does It Matter Who Did [t? [ I

Before we conclude Part 1, let's finally return to the question we asked near its beginning:
Is there a statistically significant difference in means between the ways Joe and Jane
usually run their positive controls? First we use the Data Filter in JMP to hide and exclude
the rows of our data table that have been tagged as outliers:

v ~ Data Filter

Clear Favorites~ Help

Select £4 Show Include
47 matching rows
Inverse

¥ [1] Outliers (2)
o]

AND OR

Now when we repeat the one-way/ANOVA without these four outliers, we get a different
result: We see evidence (p < 0.05) that, on average, Joe measures higher outputs than Jane:

Oneway Analysis of Measured Output By Researcher
110.0 =
107.5 - !
L]
5 106.0-
] : -
S 102.5 :
5 ]
] S .
= 1000 b .
L]
—5F .
97.5 ' -
-
e Jane Joe
Researcher
Oneway Anova
Pooled t Test
Joe-Jane
Assuming equal variances
Difference 4.28049 t Ratio 4.513031
Std Err Dif 0.94847 DF 44
Upper CL Dif  6.19202 Prob > [t| <.0001"
Lower CL Dif 2.36897 Prob >t <.0001* | !
Confidence 0.95 Prob <t 1.0000 o1, B 0 2 4
Excluded Rows 4

Moreover, even after excluding those four outliers, we observe that Joe's 20 remaining
positive controls exhibit a wider range of outcomes than Jane's 26 positive controls, despite
being fewer in number. Although that difference in ranges seems like evidence that Joe's
experiments are more variable than Jane's, we can do a more rigorous test within the Fit Y by
X platform by selecting the test for “Unequal Variances” from its red triangle menu:

v =iOnawmau Anahisic nf Maacured Qutput By Researcher
Quantiles [
v Means/Anova/Pooled t °
Means and Std Dev ]
t Test :
Analysis of Means Methods »
Compare Means > @
Nonparametric > -
Unequal Variances Tests if the variances are the same and
- . provides a Welch test on the means for
Equivalence Test assuming that the variances are different.
Robust | 3 .
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In this case, each of five distinct tests for unequal variances indicates that there is sufficient
evidence (p < 0.05) that Joe's control experiments are still more variable than Jane's, even
after excluding his four outliers:

Tests that the Variances are Equal

Std Dev
O=MNWAEOO~N®

Jane - Joe
Researcher

MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median

Jane 26 2.459047 2.100836 2.100836
Joe 24 7.156236 5.302182 5.085218
Test F Ratio DFNum DFDen p-Value
O'Brien[.5] 6.7239 1 48 0.0126"
Brown-Forsythe 10.4830 1 48 0.0022*
Levene 11.3781 1 48 0.0015*
Bartlett 23.4039 1 . <.0001*
F Test 2-sided 8.4691 23 25 <.0001*
Welch's Test
Welch Anova testing Means Equal, allowing Std Devs Not
Equal
F Ratio DFNum DFDen Prob>F
7.7428 1 27.981 0.0095*
t Test
2.7826

It is important to note that when we request the test for unequal variances, JMP will

also perform Welch's Test, which is not a test for unequal variances. Instead, it's a test for
a difference in means that relaxes the usual assumption of homoscedasticity (i.e., the
assumption that the data associated with each level is pulled from normal distributions
with identical standard deviations).
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We can summarize the analyses we've done above in two ways. First, with a focus on the
mechanics of data analysis:

1) We tested for a statistically significant difference in outlier frequency.

2) We tested for a statistically significant difference in means for the more
representative subsets of Joe's and Jane's positive controls.

3) We tested for a statistically significant difference in variance for the more
representative subsets of Joe's and Jane's positive controls. (We also tested
for linear effect of time on Joe's and Jane's positive controls.)

Alternatively, we can focus on the interpretation and predictions of the data analysis:

1) There is evidence that, for some reason, Joe sometimes runs his positive control
in a fundamentally different way that is not representative of the rest of his positive
controls. We predict that having Joe and Jane partner to observe the different ways
that they each execute their control experiments could help to identify a root cause
that explains the observed difference in outlier frequency.

2) There is evidence that, for some reason, Joe tends to measure larger values than
Jane for the same positive control. We predict that having Joe and Jane partner to
observe the different ways that they each execute their control experiments could
help to identify a root cause that explains the observed difference in their means.

3) There is strong evidence that, for some reason, Joe's data exhibits more variability
than Jane’s, even within the more representative subset of Joe's positive controls.
We predict that having Joe and Jane partner to observe the different ways that
they each execute their control experiments could help to identify a root cause
that explains the observed difference in their standard deviations. (The correct
hypothesis should be able to explain why Joe's positive controls have been
drifting steadily upward over time.)

Although it is possible that Joe's failure to comply with one specific aspect of a
documented standard operating procedure explains all six signals we have observed
(four outliers, one difference in means and one difference in standard deviations), it is
also possible that investigating Joe's variation will lead us to at least one previously
overlooked factor that we can design into future experiments to improve our output
mean (not just its stability). In this case, since all four outliers are of a similar magnitude,
we might reasonably suspect that they share a single root cause. Also, since the
observed difference in means and standard deviations can be traced to the same
upward drift in Joe's positive controls, it seems likely that those two observations share
a single root cause as well.

Whatever the root causes happen to be, they would be valuable to know. At minimum,

improving the precision and reducing the failure rate of these experiments will reduce
the time it takes our team to reach our shared goals for R&D or product development.
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Part 2: How to use JMP to test for differences between researchers repeatedly
running two related positive controls

As our R&D team progresses toward its goals for technology development, a
performance gap widens between our latest, greatest results and our initial positive
control. Never mind all the specific innovations we've made to the materials and
equipment we use and how we use them - that performance gap alone is enough to
generate suspicion that the old positive control may no longer be relevant to today's
work. It's certainly possible that the old control experiment is still sensitive to all the
same sources of variation as our latest test conditions, but it's reasonable to suspect it
might not be.

If we update the conditions we run as positive controls from time to time, we ought to
update how we use our statistical software as well, so we can extract as much insight
as possible from our R&D team's limited budget for replication. Often the hardest part
about using these features of our statistical software is simply knowing where to look
for them.

The sample data table provided with this paper includes columns documenting the
positive control "Version” corresponding to each “Version Output” value. In this case
we have assumed the table’s first 25 rows were recorded using Version A and the last
25 rows were recorded with Version B. Although we could apply the univariate and
bivariate statistical methods described above to only the Version B subset of the data
table, we could do a multivariate analysis of the full data set instead. For example, we

*

can fit Version Output as function of Version, Researcher and an additional Researcher
Version interaction term using the Fit Model platform:

® @ Fit Model
v «~ Model Specification

Select Columns Fick Rale Variables

Personality:  siandard Least Squares B

~ 13 Colurnns < Emphasis:  Effact Leverage
o Wisek
A Exparirmant
2 . Help Run
& True Signal Vieight
4 Random Moise Recall Keep dialog open
4 Maasured Cutput Freq
& Outers Remaowve
& Varsion ‘Validation
A Version Qutput
& Version Qutliers By optianal
& Many Varsions —==
4 Many Varsions Output
& Many Varsions Outliars Consiruct Model Effects
Add Virsian
RAesearcher |
Cross AesearcherVersion
Nast
Macros =
Degree | 2|
Aftributes =
Transform =
Mo intercept
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The result is a very statistically significant model (p < 0.0001):

140
%
130 -
= [ B
2 e
2 1204
g . "
3 110 - "
L =
(5]
@ 100-
]
=
90 - ®
°
80 T T ] T T
80 90 100 110 120 130 140
Version Output Predicted RMSE=6.0969 RSg=0.85
PValue<.0001

However, Version is the only statistically significant term in this model:

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| Lower 95% Upper 95% VIF
Intercept 11530567 0.696003 165.67 <.0001° 113.90469 116.70665 !
Version[A] -16.11593 0.696003 -23.15 <0001 -17.51691 -14.71495 1.0281385
Researcher{Jane] -0.731895 0.696003 -1.05 0.2085 -2.132876 0.6600855 1.0264835
R herJane|*Version[A] O 0696003 1.33 01719  -0.435018 2.3669428 1.0018182

In the plot of actual versus predicted values above, we can see that there are four

rows of our data table that are not fit as well by our model as the majority of our data.

We can perform a rigorous test for outliers without leaving the Fit Model platform
by clicking on its red triangle and selecting “Plot Studentized Residuals” from the
“Row Diagnostics” menu:

v = Bacnnnaa Varoinn Medput
Regression Reports >
Estimates : 7 = Vel
Effect Screening |ot v Lev
Factor Proﬁllng 7
| v Plot Actual by Predicted
Save Columns + Plot Effect Leverage E 1
- + Plot Residual by Predicted
Model Dialog V/ Plot Residual by Row 81
+ Effect Summary Residuals are divided by external standard
Local Data Filter Plot Residual by Normal Quantiles Ll =
Redo ng Press 5 L
Save Script > Durbin Watson Test g

Does It Matter Who Did [t? [ I
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Our Fit Model report now includes a data visualization that, like the Control Chart
example above, identifies statistically significant outliers as that data which lies outside
the illustrated limits:

Studentized Residuals
Y — — — ——————
E
é? 2
_g U‘i-.'.... L] .l... L bl ) o 00.. .l..-o L, u...
= | L]
'§ = | 0 N o
E -d-' L]
0 10 20 30 40 50 60
Row Number
Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual
limits in green.

Although the specific statistical test that JMP is performing in this case is distinct from
control chart logic, the data that gets flagged as outliers by each test is frequently the
same. Although it is more convenient to test for outliers within the Fit Model report,
if desired we can test for outliers using control chart logic by saving the residuals of
our model as a column in our data table:

¥ = Bacnanca \laveinn Mupyt
Regression Reports >

Estimates > v =IVen
Effect Screening » ot v Lew
Factor Profiling L3 14(

Row Diagnostics > | §
Prediction Formula L

T Predicted Values i
Model Dialog Residuals Residual = Actual Response - Pradicted valua

o
¥ Effect Summary Mean Confidence Interval 1

If we then drag the new Residual Version Output column into the Y position of the
Control Chart Builder, we can verify that the same row of our data table is flagged as
a statistically significant outlier by this alternate test:

v = Control Chart Builder

Undo  StartOver  Done By Individual & Moving Range chart of Residual Version Output

Select Columns

14 Columns

d Researcher

& True Signal

4 Random Noise

4 Measured Output

i Outliers

i Version

4 Version Output

i Version Outliers

& Many Versions

4 Many Versions Output
& Many Versions Outliers
4 Residual Version Output

~
~

Residual Version Qutput

Shewhart Variables New Y Chart
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Although the Control Chart of the residuals flags one more of our four suspected outliers

than the Studentized Residual chart, it seems plausible that both tests are suffering
substantial false negative rates. As discussed in Part 1, to mitigate the false negative
risks of our outlier tests it is wholly appropriate, after tagging the first statistically
significant outliers, to iteratively filter, re-fit and re-test our data for additional outliers.
We can do this iteration without leaving the Fit Model platform. First, we select the
one outlier in the Studentized Residuals chart, right-click and select “Name Selection
in Column...":

v Studentized Residuals
* Row Colors >
2 Row Markers »
§ Oe2a® o, & _ " s RowHidaandExcluda
o= Row Exclude
§ Row Hide
@ - ¥ RowlLabel
0 10 20 3 RowlLegend...
RowN  Row Editor
Externally studentized residuals with 95% s Select Matching Cells vidual
limits in green. Label the currently selected rows and save the
value(label) in a eslumn.
* Summary of Fit Background Color [

We can create a new column called "Version Outliers” with values of "yes” for the one
selected point and “no” for the 49 unselected points:

Name Selection in Column...

Label the currently selected rows and save the value(label) in
a column.

Column Name |Version Outliers |

Selected yes
Unselected no

Cancel OK

Next, we add a Local Data Filter to our Fit Model report and filter to “Version Outliers”

u "

= Nno:

= -I.:]D.ggnnu:nan Uarcinn Nt |y -| Local Data Filter
1 Regression Reports |
Estimates E Clear Favorites
Effect Screening >
Factor Profiling > Show £4 Include
Row Diagnostics > 48 matching rows
Save Columns > Inverse
Model Dialog I[1] Version Outliers (2)
v Effect Summary ves
Local Data Filter
Redo > AND OR
Save Script >

Does It Matter Who Did [t? [ I
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When we revisit the Studentized Residuals chart, we see that one previously untagged
row of our data table is now flagged as an outlier:

Studentized Residuals
4]
2 |
§ 2
| L
E g. 80 » SIwr Il -.. . '.l- ..'-.. - o
8 | [T e oF Voo [11] ]
_§ 24
1 . L]
g -4_. " - - i e 1
0 10 20 30 40 50 60
Row Number
Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual
limits in green.

As described above, the second time we utilize the “Name Selection in Column...”
feature, it is critical that we do not write any values to the unselected data:

Name Selection in Column...

Label the currently selected rows and save the value(label) in
a column.

Column Name |Version Outliers |

Selected ves
Unselected

Cancel OK

When we click OK this second time, our Studentized Residuals chart will update
automatically as the Local Data Filter now removes both "yes” rows from the analysis:

Studentized Residuals
E 4
2 |
§ 24 = =
{ Ll L]
'E g..1.. '. _' i i1 = . % el bkl W) s
o | 's e ® Lo 'se L
_§ 24
8 4 | '__ —— |
0 10 20 30 40 50 80
Row Number
Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual
limits in green.

Two additional rows of our data table are now flagged as outliers. As soon as they are
tagged, our Studentized Residuals chart is updated once again:

Studentized Residuals
4
B 3
R 2 . 3
§ 11 e e ee® L . .
E D-;. o %o J o .ol-. 2®
2 .44 . % *.0 L] . L]
el = & = - :
L% =3+
4 = = = = |
0 10 20 30 40 50 60
Row Number
Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual
limits in green.
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Since there are no additional rows of our data table flagged as outliers, we are finally

ready to re-interpret our multivariate model:
140 e
s
@ /,
135 - o 4
)
§ 130 - d
5 125- H :'
2 120- Vz
g
2 it - =
S . /
B 110 p
]
=>
105 o 7%
100 —
&
95 T \ T | T I \ \
95 100 105 110 115 120 125 130 135 140
Version Output Predicted RMSE=2.8932 RSg=0.96
PValue<.0001

When we direct our modeling toward this more representative subset of our data
(46 of 50 rows), we find the Researcher and Researcher*Version terms are now quite
statistically significant (p < 0.0001), both having been insignificant (p > 0.05) before

filtering the four outliers:

Parameter Estimates

Term Estimate
Intercept 116.5389
Version[A] -16.71089
Researcher[Jane] -1.965121

Researcher[Jane]*Version[A] 1.5609195

Std Error
0.354562
0.354562
0.354562
0.354562

t Ratio
328.68
-47.13
-5.54
4.40

Prob>|t|
<.0001*
<.0001*
<.0001*
<.0001*

Lower 95%
115.82336
-17.42642
-2.680657
0.8453836

Upper 95%

117.25443
-15.99535
-1.249585
2.2764554

VIF

1.0318841
1.0162495
1.0162495

Does It Matter Who Did [t? [ I

21



BN SAS White Paper

We can complement what we learn from the p-values of our parameter estimates by
looking at their 95% confidence intervals. For example, when we look at the Least
Squares Means Table for the Researcher*Version interaction term, we see that the
confidence intervals for the "Jane, A" and "Joe, A" levels overlap, but the confidence
intervals for the "Jane,B” and "Joe,B" levels do not:

Researcher*Version
Leverage Plot

140

135
130 -
125+
120
115

110 i
105"

100
95

Version Output Leverage Residuals

S I T T T T T T T
95 100 105 110 115 120 125 130 135 140
Researcher*Version Leverage, P<.0001

Least Squares Means Table

Least
Level SqMean  Std Error Lower 95% Upper 95%
Jane,A 99.42381 0.61066028 98.19145 100.65617
Jane,B  129.72374 0.71309757 128.28466 131.16283
Joe,A 100.23221 0.78835903 98.64124 101.82319
Joe,B 136.77583 0.71309757 135.33674 138.21491

In other words, although there was no statistically significant difference between
Researchers for Version A, Joe's values increased relative to Jane's when we started to
run Version B. We can illustrate the same conclusions another way by turning on and
interacting with the JMP Profiler:

v = Dasnnanoa Warsinn ﬂlllp“t
Regression Reports >
Estimates | %
Effect Screening » int
Factor Profiling S Profiler Graphically explore the prediction squation by
" - " slicing it one factor at a time. Features for
Row Diagnostics > Interaction Plots optimization.
Prediction Profiler Prediction Profiler
140
135
g 99.42381 - 2
: i 129,7237 i ]
E [ga.1014, 120 [128.285, 1%
E 100.65 10 E 131.163]
100 e > F E
a5 i i '
< o i § < = g 3
A Jane o
P Pt B Jane
Marsion Resaarchar
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Having fit this more representative subset of our data table, we can next test the
hypothesis that different researchers have run their positive controls with different
degrees of random variation. However, since the Fit Model platform does not have
its own feature to test for unequal variances in its residuals, we must first save those
residuals as a new column in our data table:

v =B AY/ H nlllput
Regression Reports >
Estimates e
Effect Screening > ot
Factor Profiling > =
Row Diagnostics > /I/
Prediction Formula
- Predicted Values
MadelDiatog
v Effect Summary Mean Confidence Interval

We can then use the FitY by X platform in the same way as illustrated above to test for
unequal variances when Y = Residual Version Output and X = Researcher:

Tests that the Variances are Equal

Std Dev
P
1

Jane Joe
Researcher

MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median

Jane 26 2.454400 2.066228 2.066228
Joe 20 2.106741 1.763765 1.735382
Test F Ratio DFNum DFDen p-Value
O'Brien[.5] 0.7581 1 44  0.3887
Brown-Forsythe 0.8188 1] 44  0.3705
Levene 0.7374 1 44  0.3952
Bartlett 0.4837 1) . 0.4868
F Test 2-sided 1.3573 25 19 0.4991
Welch's Test
Welch Anova testing Means Equal, allowing Std Devs Not
Equal
F Ratio DFNum DFDen Prob>F
0.0000 1 43.417 1.0000
t Test
0.0000

Does It Matter Who Did [t? [ I
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In this case, all the p-values are now greater than 0.05, indicating that there is no
longer evidence that the different researchers have run their positive controls with
different degrees of random normal variation. Similarly, we can no longer detect a
linear relationship when we filter to Joe's representative subset of the data table and
fit Residual Version Output as a function of Experiment:

Bivariate Fit of Residual Version Output By Experiment

Residual Version Output

0 10 20 30 40 50
Experiment

Linear Fit

Residual Version Output = -0.552568 +
0.0212526*Experiment
Parameter Estimates
Term Estimate Std Error tRatio Prob>|t| Lower95% Upper 95%

Intercept -0.552568 0.970343 -0.57 0.5761 -2.591184  1.4860474
Experiment 0.0212526 0.032471 0.65 0.5211 -0.046967 0.0894723
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Although these tests are no longer detecting statistically significant signals, the
upward trend in Joe's results over time hasn't actually disappeared: It now appears
as the statistically significant interaction term in our model of the means.

Having tagged four of our 50 runs as outliers, we can also test for statistically significant
differences between researchers with respect to outlier frequency. If we assume that
these outlier frequencies are independent of which version Joe and Jane are executing,
we can simply run the same Fit Y by X platform as described above:

e . Fit ¥ by X - Contextual
Distribution of ¥ for each X. Modeling types di i lysi
Select Columns Cast Selected Columns into Roles Action
St Y, R Versio
. Response | ik n Outliers. 0K

A Véoek optional
. i Cancel
& Researcher
& True Signal
4 Handomoiso X, Factor il Researcher
4 Measured Output optional P
& Qutliers
e Recall
oy
& Many Versions -

i Many Versions Outliers = -
ingency By optional

4 o
If quﬂ
Bivariate Oneway

ik ]

ald &

Logistic Contingency

V| il all
Contingency Analysis of Outliers By Researcher
Mosaic Plot
1.00
0.75 -
8
g 0.50
0.25
0.00
Researcher
Tests
N DF  -Loglike RSquare (U)
50 1 31249996 0.2242
Test ChiSquare Prob>ChiSq
Likelihood Ratio 6.250 0.0124
Pearson 4.710 0.0300*

Since each of the p-values in these tests is less than 0.05, we can conclude that there is
something fundamentally different between Jane's and Joe's approaches to running
their positive controls (both Versions A and B), some root cause (at least one) that leads
Joe to generate outlying results more often than Jane.

Does It Matter Who Did [t? [ I
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We can relax the assumption that Joe and Jane have the same outlier frequencies for
both Versions A and B a couple different ways. One is to introduce “Version” as a
"By" variable in the Fit Y by X platform:

LI ] _ . Fit ¥ by X - Contextual
Distribution of ¥ for each X. Modeling types determine analysis.
Select Columns Cast Selected Columns into Roles Action
=13 Columns ¥, Response | il Version Outliers OK
4 Week optional
A Experiment Cancel
& Researcher
ik True Signal
F Hand?;g\ Noise ¥, Factor il Researcher
4 Measured Output optional Remove
& Outliers
& Version Recall
A Version Output Honal
£ Verson Outrs B
i M rsions
4 M:.rwry xm Output Weight optional numeric

i Many Versions Outliers. . .

rv) ”
..‘ :':Iu optional
i
ald B
Logistic Contingancy
4 i all

A second is to add a Researcher*Version interaction term to the Fit Model analysis of
the nominal variation in the Version Outliers column:

® ) Fit Model
* = Model Specification
Salect Colurmns Pick Role Variables Persanality.  pominal Logistic
*13 Columns Y ik Version Outliers TargetLevet: o [
A Weak L il
: Expenment . Help Run
& True S g
. H’:I]om 2 — = Recall Keep dialog open
A Measured Output Freq opfional numarc
4 Outliers Raiow
& Varsion Validation | | oprional
4 Vigrsion Output
& Version Outliars By
& Many Versions
4 Many Versions Output
& Many Versions Outliers Censtruct Made| Effects
Add Version
Rasaarchar
AesearcherVersion
Cross
Nest
Macros *
Aftibutes =
Transform (=
R intercept
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The disadvantage of using the “By” variable for testing the two versions is that we lose
statistical power when we perform two independent analyses on each of two smaller
data tables. Unsurprisingly, all of the various p-values calculated this way are >0.05
(not shown). By using Fit Model instead, we can use the full data table to test multiple
hypotheses simultaneously and with maximum statistical power:

1) Assuming researcher doesn't matter, is there evidence that different versions of our
positive control generate outlying results with different frequencies?

2) Assuming version doesn't matter, is there evidence that Joe and Jane generate
outliers with different frequencies?

3) Is there evidence that a particular combination of version and researcher is especially
prone to outlying behavior?

In this case we see that there is only evidence (p < 0.05) that the second hypothesis is true:

Effect Likelihood Ratio Tests

L-R
Source Nparm DF ChiSquare Prob>ChiSq
Version 1 1 6.17825e-8 0.9998
Researcher 1 1 5.07134409 0.0243*
Researcher*Version 1 1 6.77634e-8 0.9998

Although it's possible the other hypotheses are also true, we just don't have enough
data yet to resolve those effects if they exist.

Does It Matter Who Did [t? [ I
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Part 3: How to use JMP to test for differences between researchers running rapidly
evolving positive controls

For many of us in R&D, the previous examples may have seemed foreign - even fictitious.
Who among us ever runs the same positive control 50 consecutive times? Or even 25
times? Maybe the analytical chemists on our team have the luxury of measuring the same
standard samples over and over and over again,? but for many of us, each run of our
experiment consumes a lot of time and money. If we're going to replicate anything at all,
we'd rather direct our restricted replication budget toward our latest, greatest results.

The columns in our sample data table called "Many Versions” and “Many Versions
Output” simulate a scenario in which we change what we run as a positive control
every five experiments or so. Even though the 10 versions of our positive control were
run as few as three times each - and some were never run by more than one of the
researchers - we can still use Fit Model to test for a version-independent difference in
means between researchers:

L] [ ] Fit Model
+ = Model Specification
Select Columns Pick Role Variables Personality:  grandard Least Squares B
13 Columns v Emphasis:  Effect Leverage

A Waak
: Experimant Help Run
& Trua Signal Weight
i Holss Recall Keep dialog open
4 Measured Output Freq
& Outliers. Remove
i Version Validation
A Version Output
i Vorsion Outliers By
i Many Versions.
4 Many Versions Output
& Many Versians Outliers Construct Model Effects

Add Many Virsione

Aesaarcher
Cross
Mest
Macros *
Aftributes =
Transform =
No Intercept

2 In this author's experience, even relatively simple and routine analytical methods are more likely than not to exhibit
nonrandom variation until a deliberate effort has been made to stabilize them. As much as we might wish our team’s
experimental methods to be inherently stable (or its eyes to be especially observant or its hands to be especially reliable or
its hearts to be especially caring), we should neither overestimate the cost of doing the work described in this manuscript
nor underestimate the costs of misinterpreting nonrandom variation as the signals we had intended to study.
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Our first analysis using all 50 measurements made with all 10 versions suggests there is

no difference between researchers:

Least Squares Means Table
Least

Researcher Leverage, P=0.9153

Level SqMean  Std Error Lower 95%
Jane 141.62454 1.0016344 139.59854
Joe 141.78491 1.0442142 139.67279

Researcher
Leverage Plot
170
g’ 160
g 150 P
e | ) ...
g , 140 -
2 .
68 130- e %
gd:n 120
§
2] 110
§
= 100
90 - " = 5 = T
141.0 141.2 141.3 141.4 141.5 1416 141.7

Upper 95% Mean

143.65054 139.358
143.89703 143.051

However, we should always look for evidence of nonrandom variation in our data set
before accepting the conclusions of our first analysis. When we add the Studentized
Residuals chart to our report, we see that none of our data appears outside the red limits

for outlier detection:

Studentized Residuals

¢ i
g 3
2 2 = . -
%L .-. ....I-”'u.""'. .'o' bl
I L . ° « * . =
g2 - g -
& - .

i

0 10 20 30 40 50 60
Row Number

Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual
limits in green.

However, as discussed above, these outlier tests can have substantial false negative rates,
as each additional outlier in the data set inflates the estimate of random normal variation
used to test for outlying behavior. If excluding any one of the suspected outliers would
place another outside the red limits, it's reasonable to tag both of those points as outliers.
In this case, as soon as we tag and filter just the one residual furthest from 0, our updated
model immediately identifies a second outlier (not shown). Filtering this second outlier
reveals a third. Filtering this third outlier then reveals a fourth.> When we filter out all four
outliers, we can now detect a statistically significant Researcher effect (o = 0.0014):

3 Because we can now count some numbers of version replicates on one hand, some of the studentized residuals will
appear strongly anti-correlated with each other. For example, if one of Joe's two replicates running Version | has a negative
residual in our model, the other will likely have a positive residual. If only one of those replicates is a true outlier, there is
some risk that both of them will appear outside the red limits. In order to mitigate this false positive risk, consider tagging
and filtering only one additional outlier at a time - generally the one furthest from zero - until no more of the data appears
outside the red limits. If both points are outlying and equally distant from zero - especially if we have no prior reason to
expect either positive or negative outliers - filter out both of the outlying points to reduce the risk that our estimate of the

researcher effect would be biased in either direction.

Does It Matter Who Did [t? [ I

29



BN SAS White Paper

Researcher

Leverage Plot
170

Many Versions Output Leverage
Residuals
8
1

! . ’ . ; -
139 140 141 142 143 144 145
Researcher Leverage, P=0.0014

Least Squares Means Table

Least
Level SqMean  Std Error Lower 95% Upper 95% Mean
Jane 14151342 0.55395678 140.38883 142.63801 139.358
Joe 144.54048 0.63842666 143.24441 14583656 144.581

If we want to relax the implicit assumption that the researcher effect has the same
magnitude across all versions, we are going to lose an awful lot of statistical power.
Each additional version in our data set requires an additional interaction term in our
model, which reduces the degrees of freedom we use to measure its error. In other
words, even if there were a real difference between researchers for just Version F, it
will be harder to detect when Joe has run Version F only three times and Jane has run
Version F only once; and, of course, it will be impossible to detect that difference for

Version J, which Joe has never run at all.

Having saved the outlier information to its own column, we can again test for a significant
difference in outlier frequency between researchers using either the Fit Y by X or Fit
Model platforms (only the latter is shown here):

L K Fit Madel

* = Model Specification

Snlect Columns

13 Colurnns

A Week

< Exparirment

& Researcher

& True Signal

4 Random Noise

& Many Versions
4 Many Versions Output
& Many Varsions Outliers

Pick Aicde Varisbles.

Parsonality:
" | dl Marny Versions Outbers | Target Lovek
optiona!
Help

Weight
Reeall

Frag

Remave

Validation | op

By aptional

Corstruct Modal Effects

Add Many Versions
Researcher
Cross
Nest
Macros ¥
Attributes =

Transform =
Ma Intercept

Nominal Logistic
~ @
Run

Keap dialog open
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In both cases, we observe evidence (p < 0.05) that there is a real difference between
Joe's and Jane's outlier frequencies (under the implicit assumption that those rates are
constant across all versions):

Effect Likelihood Ratio Tests

L-R
Source Nparm DF ChiSquare Prob>ChiSq
Many Versions 9 9 8.44358998 0.4901
Researcher 1 1 6.61767504 0.0101*

It is similarly straightforward to test for unequal variances among the residuals of
our fit to the Many Versions output data. That said, in Part 2 this test already failed to
detect a difference in standard deviations when Joe's real drift was instead detected
as a statistically significant interaction between the researcher and the two versions
of his positive control. In Part 3 we have been forced by our highly stratified data to
drop the interaction terms from our model, but the fact that our model is constructed
by minimizing a single sum of squared residuals across both researchers and all 10
versions means that Joe's real drift is now hopelessly confounded with - and biasing -
our estimates of the many version means. We suspect this multiparameter minimization
will end up balancing the unexplained variation in our model between Joe's and
Jane's residuals, and a test for unequal variances confirms that suspicion by exhibiting
p-values > 0.05 (not shown).

Does It Matter Who Did [t? [ I
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Additional Commentary

What can happen when we change our positive controls too frequently

If we imagine the number of positive control versions approaching the total number of
rows in our data table, the real shifts in Joe's outcomes become even harder to detect.
For one, we expect the p-value for the Researcher effect on means to climb as the
number of parameters in our multivariate linear model approaches the number of data
points we feed it. For another, even Joe's outlying results may go undetected if they
are no longer outlying enough to stick out from the real variation our experiments were
intended to study.

Perhaps the best-case scenario is that these undetected signals merely inflate the Root
Mean Square Errors (RMSEs) of our multivariate linear models. Of course, as our RMSE
increases, so does the false negative risk that we measure p > 0.05 for many of the truly
significant factors we are testing with our experiments. To be clear, the 95% confidence
intervals of our parameter estimates do not necessarily become less accurate - i.e., on
average, 95% of them should still contain their true values - but they can become so
large that many of them now contain zero as well.

A more likely scenario when we rarely repeat the same controls is that these undetected
signals become so confounded with the factors tested by our experiments that well over
5% of our 95% confidence intervals no longer contain their true values. Some parame-
ters may be observed to be statistically significant when they are truly zero, while other
parameters could be estimated as positive when they are in fact negative.

Although Parts 1, 2 and 3 of this article illustrated how important it is to tag and filter the
outliers in any data set, the tools that make it so easy to identify real outliers in repeated
data can make it too easy to tag the wrong data when no conditions are repeated. The
false positive risk for mistakenly tagging the wrong data as outliers increases as (1)

the degrees of freedom in our model decrease and (2) the real variation we intend to
study gets closer in size (either larger or smaller) to the nonrandom variation we wish
were zero. Although it's tempting to remove that one leverage point from our experi-
mental design that singlehandedly accounts for most of our model's RMSE, we should
be aware of this risk we incur as we do so.

Of course, model-building should never be the last thing we do on our projects; it is
always prudent to validate our models with at least one final experiment. We can even
take care to focus those validation runs on whichever regions of the design space would
be most sensitive to the different assumptions we might make when fitting our data (e.g.,
which predictions are most sensitive to whether or not we train our model using the rows
suspected of being outliers?).
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What can happen when we normalize each experiment’s results to its positive control
Some researchers on our R&D teams may be thinking, “But that's why we always run
positive controls. It doesn't matter if Joe's results are shifting or drifting or occasionally
outlying. As long as he includes some kind of positive control or reference condition
in each of his experiments, he can still measure the signals his experiments were
designed to measure by differencing or normalizing each experiment's results to its
reference condition.”

Sometimes this is true, but this claim makes two implicit assumptions that are too often
untrue if we have not done the work to validate them explicitly. When we difference or
normalize our measurements against a control, we implicitly assume:

1) The nonrandom drivers of variation within each experiment influence each of its
measurements identically.

2) The magnitude of random variation in each measurement is small relative to the
signals we are trying to measure.

Imagine that we've investigated the drift in Joe's data revealed by the positive controls
of Part 1 (or, equivalently, the shift in Joe's data revealed by the positive controls of Part
2), and we've determined that what's driving Joe's variation is that his thermocouple
has been drifting more quickly than expected since its last scheduled calibration. Going
forward, we'll check our thermocouple calibrations more frequently, and we'll replace
Joe's misbehaving thermocouple as well. Looking backward, what do we make of the
last three months of Joe's experiments?

If it turns out the thermocouple drift has been fast relative to the time between runs

in each of Joe's experiments, then each run has its own unique bias that cannot be
completely removed by simply differencing or normalizing to a contemporaneous
reference condition. We could, in this case, develop a more sophisticated way to
process our data that accounts for the measured rate of thermocouple drift (and
assumes it has been constant). But if we had never measured that rate by compiling
our positive controls in the first place, the undetected thermocouple drift would
confound our results, leading to higher rates of false positives and false negatives
than we would predict from the random component of variation in Joe's and Jane's
data. Those preventable false negatives would slow our R&D team's progress. Those
preventable false positives would keep consuming precious time and money until the
day we stop complaining about our lab’s “reproducibility problem” and start dedicating
more resources to solving it.

If we can demonstrate that the rate of materially significant thermocouple drift has been
slow relative to the time between the runs in each of his experiments, we can have some
confidence that a simple differencing or normalization of the measurements within each
experiment is correcting those data for the nonrandom and correlated variation attribut-
able to this nuisance factor. However, since there is always some amount of random and
uncorrelated variation present in every measurement, we can never completely isolate

the shift, drift or outlying variation in our positive controls from the signals in the rest of

our experiment. Even when the normalization of data within experiments genuinely in-

creases the comparability of data between experiments, data that are unbiased to begin
with will always generate higher signal-to-noise ratios than differenced or normalized data.

Does It Matter Who Did [t? [ I
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It doesn’t matter if the random fluctuations within each experiment are small relative to
its nonrandom bias. What matters is that these random fluctuations are small relative

to the signals that, if detected, would move our R&D program substantially closer to its
goals. When we don't explicitly demonstrate that this is true, we can waste considerable
resources running insufficiently powered experiments or chasing the random noise that
is introduced specifically by normalizing our data against our positive controls. When the
random variation in a single positive control happens to be positive, we may misinterpret
all our experiment's test conditions as disappointments. When the random variation in

a single reference condition happens to be negative, we may conclude that whoever
designed this week’s experiment is somehow smarter than whoever designed last week'’s
experiment. When we then fail to reproduce any of those promising results, those
undeserved reputational differences may linger and bias important resourcing decisions
that can't wait for our statistical software to stop making bad predictions with the
ineffectively normalized data we've been feeding it.
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Conclusion

Every detail of this article would remain relevant if we substituted Instrument, Day of the
Week, Site or any number of other nominal factors everywhere that it currently reads
Researcher. Regardless of which nuisance factor turns out to explain a surprising amount
of the variation in our data tables - whether it's a who, a what, a when or a where - too
often we assume the noise in our data is normally distributed when it is not. In other
words, too often we assume our research processes are sufficiently stable before we
have invested the effort to make them so.

If we are already running one or more positive controls in every experiment we do, let's
make sure we are learning as much as possible from this significant commitment of our
time and money. Here are the five keys to getting this right:

1) Compile positive control data for all of our related research processes into a single
data table that spans numerous experiments.

2) At minimum, add columns to this data table that document who ran these positive
controls, when they were run and where they were run (e.g., which reactor or
instrument was used?). Record any other nuisance factors that could explain some
of today's observed variation, even if our ultimate goal is to develop processes that
are independent of those factors.

w

Use statistical software such as JMP to analyze our data as a function of both the
factors we intended to study and those we didn't.

£

Resist the urge to invent a new positive control with every experiment. Although
we will still need to change our positive controls from time to time, we should take
deliberate care to avoid changing our positive controls so often that we can no
longer measure any materially significant effects of who, what, when or where on
our experiments.

<

Whenever an unexpected signal in our data is flagged as statistically significant,
prioritize the investigation to determine its root cause. If necessary, negotiate an
extension on the deadline for the next experiment. Sometimes these underappre-
ciated root causes can be identified in less than an hour! Even when it takes days
to identify the root cause, this investment can save us weeks, if not months, of
drawing the wrong conclusions from the work we do every day. Unless it's already
December, these investigations will almost always improve our chances of hitting
our year-end targets for technology development, regardless of whatever delay
they impart to next week’s previously scheduled experiment.

There's just no substitute for detecting and addressing those root causes of the
unexplained variation in our data tables! The first step is to stop thinking about our
positive controls as something we do to normalize the results of each experiment and
to start planning to use them to measure the day-to-day, week-to-week and month-to-
month stability of our various research processes.

Does It Matter Who Did [t? [ I
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