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Introduction

Whether we are attempting to do profitable manufacturing or reputable science, our 
goal is the same: to predict the future. As the outputs of a company’s manufacturing 
operations become more and more predictable, it gets better and better at writing 
contracts that grow the balance of revenues and costs in a competitive marketplace. 
Likewise, as the initial predictions of an R&D team’s latest model are validated by 
subsequent experimentation, they become more willing to bet more of their time, 
money and reputation on the model’s more far-ranging predictions. 

Among both scientists and engineers, there is one prediction that is so obvious it is 
frequently unspoken and so foundational it is frequently untested: the prediction that 
two people independently executing the same procedure should get the same result. 
To be sure, scientists will often try to reproduce the results of a new journal article  
before attempting to extend it, and corporate product managers will usually budget 
for time-consuming comparability testing when doing tech transfer or scaling up a 
manufacturing process to a new site. Yet these same people will implicitly assume that 
Joe’s and Jane’s results are comparable when they do R&D in the same building –  
without sufficient evidence to do so.

There are three distinct ways in which Joe and Jane can get different results in the lab 
despite receiving the same training and using the same equipment to execute the 
same protocols: 

1)  They could execute the same experiments with different means. 
2)  They could execute the same experiments with different standard deviations. 
3)  They could generate outlying results with different frequencies.

Although most managers – and the most frequently used statistical methods – are 
focused on measuring differences in means, a statistically significant difference in 
any of these dimensions can present an opportunity to learn something valuable. To 
be clear, there is generally little value (and usually negative value) in thinking we’ve 
learned, “This researcher is better than that one.” Rather, the valuable thing we learn is, 
“There must exist some specific root cause that was too easily forgotten from our pro-
tocol or our training – or completely overlooked by it.” By investigating and successfully 
identifying the root cause of any statistically significant difference among researchers, 
at minimum we increase the likelihood that the protocols we share with the scientific 
community or our manufacturing partners will readily reproduce the outcomes we 
have observed in our own workplaces. These insights can also accelerate our R&D 
progress by increasing the signal-to-noise ratios of all subsequent experiments we do.

Although the specific root causes and the ways they are investigated will vary from lab 
to lab and from project to project, the statistical methodologies we might use to deter-
mine if there are researcher-related root causes worth investigating are fundamentally 
the same. The rest of this white paper describes a variety of ways we can learn more 
from our positive controls by testing for statistically significant differences in either the 
mean, standard deviation or outlier frequency among two or more researchers doing 
experiments in an industrial or academic R&D setting. This article assumes the reader has 
a Wikipedia-level conceptual understanding of statistical hypothesis testing, confidence 
intervals, multivariate linear regression, design of experiment methodologies and 
statistical process control. 
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Requirements

Although our ultimate goal is to build models that predict a future that can be 
precisely reproduced by anyone, anywhere and at any time, the discovery that 
today’s models would predict a persistent difference between Joe’s and Jane’s 
outcomes can serve as an important step on the path to achieving that objective. 
Of course, we can’t test the hypothesis that their data is comparable – or the 
hypothesis that we might derive a valuable insight from their lack of comparability 
– until we create the opportunity to do so. The two most important requirements 
for performing such tests are: 

(1)  There must be a column in our data table that documents which researcher 
generated which outputs. 

(2)  We must have access to statistical software such as JMP® to analyze the data.

When there is no record in our data tables of which researchers executed which 
specific aspects of each experiment, we are implicitly assuming that everyone’s 
data is comparable and that there is nothing of value to learn by testing for 
differences among them. Not only is this assumption frequently wrong, but it 
opposes everything else we do as researchers to determine which factors influence 
our experiments and by how much. Perhaps more importantly, as a practical matter, 
whenever the “Researcher” column explains a statistically significant fraction of the 
variation in our data tables, including that term in our multivariate models improves 
the precision with which we can measure its other coefficients (for examples, see 
Parts 2 and 3 to follow).

When we have access to good statistical software, we can even detect a persistent 
offset between researchers without replicating a single condition in our experiment. 
Nevertheless, many of us have made a habit of running “positive controls” alongside 
the truly novel conditions we test in each experiment. We even take pride in our 
commitment to carefully designing and executing the positive controls for each 
experiment we do. However, if we are not compiling the data from weeks and 
months of these positive controls to look for statistically significant correlations 
among the researchers who ran them, we are not extracting nearly as much value 
from them as we could.

Part 1 of this paper uses the example of a single, oft-repeated positive control to 
review foundational concepts and procedures for measuring the effect of the 
researcher on the mean, standard deviation and outlier frequency of an experiment. 
Parts 2 and 3 demonstrate how the same tests can be run even when we change 
what we run as our positive control from time to time. In addition to highlighting 
some underutilized features of JMP, these sections highlight some underappreciated 
trade-offs we make whenever we choose to update which conditions we run as 
positive controls.
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Guides and Commentary

Part 1: How to use JMP to test for differences between researchers repeatedly 
running the same positive control

Imagine that over a three-month period, Joe and Jane independently run the same 
positive control a total of 50 times. If the data for these repeated controls is compiled 
into a single table, such as the sample data table provided with this article, we can test 
for evidence of a statistically significant difference in Joe’s and Jane’s mean outputs 
using the Fit Y by X platform in JMP:

If we take this analysis at face value, we might conclude from its two-tailed p-value 

(0.1986) that Joe and Jane are generating comparable data with their independent 
experiments. However, if this is the only way that we analyze the data, we will overlook 
many valuable stories that these positive controls have to tell.

A fundamental assumption of this one-way analysis is that the process variation around 
Joe’s and Jane’s means is normally distributed – i.e., random. However, it appears 
in the data visualization above that Joe’s data might not be normally distributed. 
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Specifically, it appears as though there may be three or four outliers (measured output 
< 95) that are not representative of the positive controls Joe ran on 21 other occasions. 
If indeed there is evidence for nonrandom variation in anyone’s data, we should tag 
those outliers and then revisit the test for means using only the normally distributed 
subsets of their data.

We can use the Distribution platform to test for both normality and outliers:
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Whereas the p-value for Jane’s data is >0.05 (0.5916), the p-value for Joe’s data is 
<0.05 (0.0145). In other words, there is evidence that Joe sometimes runs his positive 
controls in a fundamentally (and measurably) different way than he usually runs his 
positive controls.

The box-and-whiskers plots adjoining the histograms above would have automatically 
flagged as outliers any data that is either < 1st quartile – 1.5*(interquartile range) or 
> 3rd quartile + 1.5*(interquartile range). In this case, none of Joe’s or Jane’s data is 
flagged as outliers, because none of their data meets these criteria.

An alternative test for outliers can be performed using control chart logic. Control 
charts are constructed by coupling a plot of repeated data versus time (i.e., a run 
chart) to an algorithm for testing each individual replicate for evidence of nonrandom 
variation. A run chart becomes a control chart when the outputs of this algorithm are 
superimposed as two red lines called control limits, each equidistant from a third line 
representing the output mean. Each individual point that falls outside the control limits 
flags evidence of nonrandom variation in the illustrated data.

We can plot Joe’s and Jane’s time-ordered data as a control chart using JMP software’s 
Control Chart Builder by clicking and dragging Measured Output into the Y region of 
the initially empty canvas:

In this case, the algorithm that is used to calculate control limits flags two of 50 positive 
controls as statistically significant outliers. 

Although control chart logic is more sensitive than box-and-whiskers logic for detecting 
outliers in this data set, it is notable that we are still detecting only two of the three or four 
points that we had hypothesized as outliers above. Have our eyes deceived us? Or do 
our statistical tests for nonrandom variation have a substantial false negative rate? 

It’s important to recognize that most outlier tests do, in fact, suffer a substantial false 
negative rate, because the presence of nonrandom variation in a data set generally 
inflates whatever estimate of the normal component of variation is used to test for 
statistical significance. To mitigate these false negative risks, it is thus wholly appropriate, 
after detecting the first statistically significant outliers, to iteratively filter and re-test our 
data for additional outliers.1 

1To be clear, any approach to reduce false negative risk increases false positive risk to some degree. Since those risks are 
generally asymmetric, it is important to determine on a case-by-case basis which risk is more costly in a given circumstance. 
In this case, the false negative risk is that we infect future data with preventable errors for a potentially unbounded amount 
of time, whereas the false positive risk is that we initiate an unnecessary – but time-bounded – investigation into “observed” 
differences between researchers. Reasonable people can disagree about how to weigh these risks, but this author has 
observed that most researchers substantially underweight the first risk and substantially overweight the latter.
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We can do this iteration without leaving the Control Chart Builder in the following 
manner. First, we select the two outliers in the Individual chart, right-click and select 
“Name Selection in Column…”:  

We can create a new column called “Outliers” with values of “yes” for the two selected 
points and “no” for the 48 unselected points:

Next, we add a Local Data Filter to our Control Chart Builder:
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By unchecking the “Show” box and checking the “Include” box, the Individual Chart will 
continue to display all 50 measurements while its control limits are recalculated using 
only the subset of those data where Outliers = “no”:

Since the first two outliers are no longer contributing to this control chart’s estimate 
of the normal component of its variation, a third measurement is now flagged as an 
outlier. We can again use the “Name Selection in Column…” feature to document 
this row of our data table as an outlier. However, if we have selected only this third 
measurement as we do so, it is critical that this time we do not write any values to the 
unselected data:

If we write “no” in the “Unselected” field when only one row is selected, this action will 
overwrite the values of “yes” that had been written to the two rows that are no longer 
selected. (Alternatively, we must select all three rows before writing “no” in the 
“Unselected” field.) When we click “OK,” the Individual chart will update automatically, 
as it now removes all three “yes” rows from the calculation of its control limits: 
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At this point no other rows of our data table are flagged as outliers. If we color the data 
in our control chart by researcher…

we see that all three outliers are associated with Joe:

We also see that the fourth suspected outlier, while perhaps not an outlier relative to all 
the positive controls, may be outlying relative to Joe’s positive controls. We can test this 
hypothesis by dragging Researcher into the Phase region of the Control Chart Builder: 
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When we tag this fourth point as an outlier, yet again some of Joe’s positive controls 
fall outside the recalculated control limits (one above the upper control limit, one 
below the lower control limit):

However, it would seem inappropriate to call these fifth and sixth rows of the data table 
“outliers,” as both seem so similar in magnitude to so many more of Joe’s positive 
controls. This important observation illustrates that the fundamental purpose of control 
chart logic is to detect statistically significant evidence of nonrandom (“assignable 
cause”) variation, not “outliers” per se. In this case, we can see that the reason some 
data fall outside the recalculated control limits is that Joe’s positive controls seem to 
have been trending (nonrandomly) higher over time.

We can test this hypothesis using the Fit Y by X platform by filtering to the more 
representative subset of Joe’s data (Researcher = “Joe” and Outliers = “no”) and fitting 
a line to a plot of “Measured Output” versus “Experiment”:

Sure enough, the trend in Joe’s positive controls is quite statistically significant 
(p < 0.0001), with an estimated rate of 0.16 to 0.29 units per experiment. For 
comparison, the equivalent fit to Jane’s positive controls has p = 0.9675, with an 
estimated rate of -0.07 to 0.07 units per experiment (not shown).
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Are Joe’s four outliers revealing a failure mode of our standard operating procedure 
that is specific to Joe? Or might we expect Jane’s data to exhibit the same failure mode 
with a similar frequency in a larger data set? We can use the Fit Y by X platform to test for 
statistically significant differences in Joe’s and Jane’s outlier frequencies by attempting 
to explain the nominal variation in the Outliers column as a function of the nominal 
variation in the Researcher column:

By default, JMP runs two different chi-square tests, denoted “Likelihood Ratio” 
and “Pearson”:

In this case, both p-values are less than 0.05, but greater than 0.01. Although there 
is enough evidence to conclude that Joe generates outliers with greater frequency 
than Jane, we should remain open to the possibility that there is no actual difference 
between them.
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Before we conclude Part 1, let’s finally return to the question we asked near its beginning: 
Is there a statistically significant difference in means between the ways Joe and Jane 
usually run their positive controls? First we use the Data Filter in JMP to hide and exclude 
the rows of our data table that have been tagged as outliers:

Now when we repeat the one-way/ANOVA without these four outliers, we get a different 
result: We see evidence (p < 0.05) that, on average, Joe measures higher outputs than Jane:

Moreover, even after excluding those four outliers, we observe that Joe’s 20 remaining 
positive controls exhibit a wider range of outcomes than Jane’s 26 positive controls, despite 
being fewer in number. Although that difference in ranges seems like evidence that Joe’s 
experiments are more variable than Jane’s, we can do a more rigorous test within the Fit Y by 
X platform by selecting the test for “Unequal Variances” from its red triangle menu:
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In this case, each of five distinct tests for unequal variances indicates that there is sufficient 
evidence (p < 0.05) that Joe’s control experiments are still more variable than Jane’s, even 
after excluding his four outliers:

It is important to note that when we request the test for unequal variances, JMP will 
also perform Welch’s Test, which is not a test for unequal variances. Instead, it’s a test for 
a difference in means that relaxes the usual assumption of homoscedasticity (i.e., the 
assumption that the data associated with each level is pulled from normal distributions 
with identical standard deviations).
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We can summarize the analyses we’ve done above in two ways. First, with a focus on the 
mechanics of data analysis:

1)  We tested for a statistically significant difference in outlier frequency.

2)  We tested for a statistically significant difference in means for the more 
representative subsets of Joe’s and Jane’s positive controls.

3)  We tested for a statistically significant difference in variance for the more 
representative subsets of Joe’s and Jane’s positive controls. (We also tested 
for linear effect of time on Joe’s and Jane’s positive controls.)

Alternatively, we can focus on the interpretation and predictions of the data analysis:

1)  There is evidence that, for some reason, Joe sometimes runs his positive control 
in a fundamentally different way that is not representative of the rest of his positive 
controls. We predict that having Joe and Jane partner to observe the different ways 
that they each execute their control experiments could help to identify a root cause 
that explains the observed difference in outlier frequency.

2)  There is evidence that, for some reason, Joe tends to measure larger values than 
Jane for the same positive control. We predict that having Joe and Jane partner to 
observe the different ways that they each execute their control experiments could 
help to identify a root cause that explains the observed difference in their means. 

3)  There is strong evidence that, for some reason, Joe’s data exhibits more variability 
than Jane’s, even within the more representative subset of Joe’s positive controls. 
We predict that having Joe and Jane partner to observe the different ways that 
they each execute their control experiments could help to identify a root cause 
that explains the observed difference in their standard deviations. (The correct 
hypothesis should be able to explain why Joe’s positive controls have been 
drifting steadily upward over time.)

Although it is possible that Joe’s failure to comply with one specific aspect of a 
documented standard operating procedure explains all six signals we have observed 
(four outliers, one difference in means and one difference in standard deviations), it is 
also possible that investigating Joe’s variation will lead us to at least one previously 
overlooked factor that we can design into future experiments to improve our output 
mean (not just its stability). In this case, since all four outliers are of a similar magnitude, 
we might reasonably suspect that they share a single root cause. Also, since the 
observed difference in means and standard deviations can be traced to the same 
upward drift in Joe’s positive controls, it seems likely that those two observations share 
a single root cause as well. 

Whatever the root causes happen to be, they would be valuable to know. At minimum, 
improving the precision and reducing the failure rate of these experiments will reduce 
the time it takes our team to reach our shared goals for R&D or product development.
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Part 2: How to use JMP to test for differences between researchers repeatedly 
running two related positive controls

As our R&D team progresses toward its goals for technology development, a 
performance gap widens between our latest, greatest results and our initial positive 
control. Never mind all the specific innovations we’ve made to the materials and 
equipment we use and how we use them – that performance gap alone is enough to 
generate suspicion that the old positive control may no longer be relevant to today’s 
work. It’s certainly possible that the old control experiment is still sensitive to all the 
same sources of variation as our latest test conditions, but it’s reasonable to suspect it 
might not be.

If we update the conditions we run as positive controls from time to time, we ought to 
update how we use our statistical software as well, so we can extract as much insight 
as possible from our R&D team’s limited budget for replication. Often the hardest part 
about using these features of our statistical software is simply knowing where to look 
for them. 

The sample data table provided with this paper includes columns documenting the 
positive control “Version” corresponding to each “Version Output” value. In this case 
we have assumed the table’s first 25 rows were recorded using Version A and the last 
25 rows were recorded with Version B. Although we could apply the univariate and 
bivariate statistical methods described above to only the Version B subset of the data 
table, we could do a multivariate analysis of the full data set instead. For example, we 
can fit Version Output as function of Version, Researcher and an additional Researcher* 
Version interaction term using the Fit Model platform:
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The result is a very statistically significant model (p < 0.0001):

However, Version is the only statistically significant term in this model:

In the plot of actual versus predicted values above, we can see that there are four 
rows of our data table that are not fit as well by our model as the majority of our data. 
We can perform a rigorous test for outliers without leaving the Fit Model platform 
by clicking on its red triangle and selecting “Plot Studentized Residuals” from the 
“Row Diagnostics” menu:
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Our Fit Model report now includes a data visualization that, like the Control Chart 
example above, identifies statistically significant outliers as that data which lies outside 
the illustrated limits:

Although the specific statistical test that JMP is performing in this case is distinct from 
control chart logic, the data that gets flagged as outliers by each test is frequently the 
same. Although it is more convenient to test for outliers within the Fit Model report, 
if desired we can test for outliers using control chart logic by saving the residuals of  
our model as a column in our data table: 

If we then drag the new Residual Version Output column into the Y position of the 
Control Chart Builder, we can verify that the same row of our data table is flagged as 
a statistically significant outlier by this alternate test:
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Although the Control Chart of the residuals flags one more of our four suspected outliers 
than the Studentized Residual chart, it seems plausible that both tests are suffering 
substantial false negative rates. As discussed in Part 1, to mitigate the false negative 
risks of our outlier tests it is wholly appropriate, after tagging the first statistically 
significant outliers, to iteratively filter, re-fit and re-test our data for additional outliers. 
We can do this iteration without leaving the Fit Model platform. First, we select the  
one outlier in the Studentized Residuals chart, right-click and select “Name Selection 
in Column…”:  

We can create a new column called “Version Outliers” with values of “yes” for the one 
selected point and “no” for the 49 unselected points:

Next, we add a Local Data Filter to our Fit Model report and filter to “Version Outliers” 
= “no”:
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When we revisit the Studentized Residuals chart, we see that one previously untagged 
row of our data table is now flagged as an outlier:

As described above, the second time we utilize the “Name Selection in Column…” 
feature, it is critical that we do not write any values to the unselected data:

When we click OK this second time, our Studentized Residuals chart will update 
automatically as the Local Data Filter now removes both “yes” rows from the analysis:

Two additional rows of our data table are now flagged as outliers. As soon as they are 
tagged, our Studentized Residuals chart is updated once again:
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Since there are no additional rows of our data table flagged as outliers, we are finally 
ready to re-interpret our multivariate model:

When we direct our modeling toward this more representative subset of our data 
(46 of 50 rows), we find the Researcher and Researcher*Version terms are now quite 
statistically significant (p < 0.0001), both having been insignificant (p > 0.05) before 
filtering the four outliers:
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We can complement what we learn from the p-values of our parameter estimates by 
looking at their 95% confidence intervals. For example, when we look at the Least 
Squares Means Table for the Researcher*Version interaction term, we see that the 
confidence intervals for the “Jane,A” and “Joe,A” levels overlap, but the confidence 
intervals for the “Jane,B” and “Joe,B” levels do not:

In other words, although there was no statistically significant difference between 
Researchers for Version A, Joe’s values increased relative to Jane’s when we started to 
run Version B. We can illustrate the same conclusions another way by turning on and 
interacting with the JMP Profiler:
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Having fit this more representative subset of our data table, we can next test the 
hypothesis that different researchers have run their positive controls with different 
degrees of random variation. However, since the Fit Model platform does not have 
its own feature to test for unequal variances in its residuals, we must first save those 
residuals as a new column in our data table:

We can then use the Fit Y by X platform in the same way as illustrated above to test for 
unequal variances when Y = Residual Version Output and X = Researcher:
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In this case, all the p-values are now greater than 0.05, indicating that there is no 
longer evidence that the different researchers have run their positive controls with 
different degrees of random normal variation. Similarly, we can no longer detect a 
linear relationship when we filter to Joe’s representative subset of the data table and 
fit Residual Version Output as a function of Experiment:
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Although these tests are no longer detecting statistically significant signals, the 
upward trend in Joe’s results over time hasn’t actually disappeared: It now appears 
as the statistically significant interaction term in our model of the means.

Having tagged four of our 50 runs as outliers, we can also test for statistically significant 
differences between researchers with respect to outlier frequency. If we assume that 
these outlier frequencies are independent of which version Joe and Jane are executing, 
we can simply run the same Fit Y by X platform as described above:

Since each of the p-values in these tests is less than 0.05, we can conclude that there is 
something fundamentally different between Jane’s and Joe’s approaches to running 
their positive controls (both Versions A and B), some root cause (at least one) that leads 
Joe to generate outlying results more often than Jane.
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We can relax the assumption that Joe and Jane have the same outlier frequencies for 
both Versions A and B a couple different ways. One is to introduce “Version” as a  
“By” variable in the Fit Y by X platform:

A second is to add a Researcher*Version interaction term to the Fit Model analysis of 
the nominal variation in the Version Outliers column:
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The disadvantage of using the “By” variable for testing the two versions is that we lose 
statistical power when we perform two independent analyses on each of two smaller 
data tables. Unsurprisingly, all of the various p-values calculated this way are >0.05 
(not shown). By using Fit Model instead, we can use the full data table to test multiple 
hypotheses simultaneously and with maximum statistical power: 

1)  Assuming researcher doesn’t matter, is there evidence that different versions of our 
positive control generate outlying results with different frequencies? 

2)  Assuming version doesn’t matter, is there evidence that Joe and Jane generate 
outliers with different frequencies?

3)  Is there evidence that a particular combination of version and researcher is especially 
prone to outlying behavior?

In this case we see that there is only evidence (p < 0.05) that the second hypothesis is true:

Although it’s possible the other hypotheses are also true, we just don’t have enough 
data yet to resolve those effects if they exist.
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Part 3: How to use JMP to test for differences between researchers running rapidly 
evolving positive controls

For many of us in R&D, the previous examples may have seemed foreign – even fictitious. 
Who among us ever runs the same positive control 50 consecutive times? Or even 25 
times? Maybe the analytical chemists on our team have the luxury of measuring the same 
standard samples over and over and over again,2 but for many of us, each run of our 
experiment consumes a lot of time and money. If we’re going to replicate anything at all, 
we’d rather direct our restricted replication budget toward our latest, greatest results.

The columns in our sample data table called “Many Versions” and “Many Versions 
Output” simulate a scenario in which we change what we run as a positive control 
every five experiments or so. Even though the 10 versions of our positive control were 
run as few as three times each – and some were never run by more than one of the 
researchers – we can still use Fit Model to test for a version-independent difference in 
means between researchers:

2 In this author’s experience, even relatively simple and routine analytical methods are more likely than not to exhibit 
nonrandom variation until a deliberate effort has been made to stabilize them. As much as we might wish our team’s 
experimental methods to be inherently stable (or its eyes to be especially observant or its hands to be especially reliable or 
its hearts to be especially caring), we should neither overestimate the cost of doing the work described in this manuscript 
nor underestimate the costs of misinterpreting nonrandom variation as the signals we had intended to study.
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Our first analysis using all 50 measurements made with all 10 versions suggests there is 
no difference between researchers:

However, we should always look for evidence of nonrandom variation in our data set 
before accepting the conclusions of our first analysis. When we add the Studentized 
Residuals chart to our report, we see that none of our data appears outside the red limits 
for outlier detection:

3 Because we can now count some numbers of version replicates on one hand, some of the studentized residuals will 
appear strongly anti-correlated with each other. For example, if one of Joe’s two replicates running Version I has a negative 
residual in our model, the other will likely have a positive residual. If only one of those replicates is a true outlier, there is 
some risk that both of them will appear outside the red limits. In order to mitigate this false positive risk, consider tagging 
and filtering only one additional outlier at a time – generally the one furthest from zero – until no more of the data appears 
outside the red limits. If both points are outlying and equally distant from zero – especially if we have no prior reason to 
expect either positive or negative outliers – filter out both of the outlying points to reduce the risk that our estimate of the 
researcher effect would be biased in either direction.

However, as discussed above, these outlier tests can have substantial false negative rates, 
as each additional outlier in the data set inflates the estimate of random normal variation 
used to test for outlying behavior. If excluding any one of the suspected outliers would 
place another outside the red limits, it’s reasonable to tag both of those points as outliers. 
In this case, as soon as we tag and filter just the one residual furthest from 0, our updated 
model immediately identifies a second outlier (not shown). Filtering this second outlier 
reveals a third. Filtering this third outlier then reveals a fourth.3 When we filter out all four 
outliers, we can now detect a statistically significant Researcher effect (p = 0.0014):
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If we want to relax the implicit assumption that the researcher effect has the same 
magnitude across all versions, we are going to lose an awful lot of statistical power. 
Each additional version in our data set requires an additional interaction term in our 
model, which reduces the degrees of freedom we use to measure its error. In other 
words, even if there were a real difference between researchers for just Version F, it 
will be harder to detect when Joe has run Version F only three times and Jane has run 
Version F only once; and, of course, it will be impossible to detect that difference for 
Version J, which Joe has never run at all.

Having saved the outlier information to its own column, we can again test for a significant 
difference in outlier frequency between researchers using either the Fit Y by X or Fit 
Model platforms (only the latter is shown here):
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In both cases, we observe evidence (p < 0.05) that there is a real difference between 
Joe’s and Jane’s outlier frequencies (under the implicit assumption that those rates are 
constant across all versions):

It is similarly straightforward to test for unequal variances among the residuals of 
our fit to the Many Versions output data. That said, in Part 2 this test already failed to 
detect a difference in standard deviations when Joe’s real drift was instead detected 
as a statistically significant interaction between the researcher and the two versions 
of his positive control. In Part 3 we have been forced by our highly stratified data to 
drop the interaction terms from our model, but the fact that our model is constructed 
by minimizing a single sum of squared residuals across both researchers and all 10 
versions means that Joe’s real drift is now hopelessly confounded with – and biasing – 
our estimates of the many version means. We suspect this multiparameter minimization 
will end up balancing the unexplained variation in our model between Joe’s and 
Jane’s residuals, and a test for unequal variances confirms that suspicion by exhibiting 
p-values > 0.05  (not shown).
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Additional Commentary
What can happen when we change our positive controls too frequently
If we imagine the number of positive control versions approaching the total number of 
rows in our data table, the real shifts in Joe’s outcomes become even harder to detect. 
For one, we expect the p-value for the Researcher effect on means to climb as the 
number of parameters in our multivariate linear model approaches the number of data 
points we feed it. For another, even Joe’s outlying results may go undetected if they 
are no longer outlying enough to stick out from the real variation our experiments were 
intended to study. 

Perhaps the best-case scenario is that these undetected signals merely inflate the Root 
Mean Square Errors (RMSEs) of our multivariate linear models. Of course, as our RMSE 
increases, so does the false negative risk that we measure p > 0.05 for many of the truly 
significant factors we are testing with our experiments. To be clear, the 95% confidence 
intervals of our parameter estimates do not necessarily become less accurate – i.e., on 
average, 95% of them should still contain their true values – but they can become so 
large that many of them now contain zero as well.

A more likely scenario when we rarely repeat the same controls is that these undetected 
signals become so confounded with the factors tested by our experiments that well over 
5% of our 95% confidence intervals no longer contain their true values. Some parame-
ters may be observed to be statistically significant when they are truly zero, while other 
parameters could be estimated as positive when they are in fact negative. 

Although Parts 1, 2 and 3 of this article illustrated how important it is to tag and filter the 
outliers in any data set, the tools that make it so easy to identify real outliers in repeated 
data can make it too easy to tag the wrong data when no conditions are repeated. The 
false positive risk for mistakenly tagging the wrong data as outliers increases as (1)
the degrees of freedom in our model decrease and (2) the real variation we intend to 
study gets closer in size (either larger or smaller) to the nonrandom variation we wish 
were zero. Although it’s tempting to remove that one leverage point from our experi-
mental design that singlehandedly accounts for most of our model’s RMSE, we should 
be aware of this risk we incur as we do so. 

Of course, model-building should never be the last thing we do on our projects; it is 
always prudent to validate our models with at least one final experiment. We can even 
take care to focus those validation runs on whichever regions of the design space would 
be most sensitive to the different assumptions we might make when fitting our data (e.g., 
which predictions are most sensitive to whether or not we train our model using the rows 
suspected of being outliers?).
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What can happen when we normalize each experiment’s results to its positive control
Some researchers on our R&D teams may be thinking, “But that’s why we always run 
positive controls. It doesn’t matter if Joe’s results are shifting or drifting or occasionally 
outlying. As long as he includes some kind of positive control or reference condition 
in each of his experiments, he can still measure the signals his experiments were 
designed to measure by differencing or normalizing each experiment’s results to its 
reference condition.” 

Sometimes this is true, but this claim makes two implicit assumptions that are too often 
untrue if we have not done the work to validate them explicitly. When we difference or 
normalize our measurements against a control, we implicitly assume: 

1) The nonrandom drivers of variation within each experiment influence each of its 
measurements identically. 

2) The magnitude of random variation in each measurement is small relative to the 
signals we are trying to measure. 

Imagine that we’ve investigated the drift in Joe’s data revealed by the positive controls 
of Part 1 (or, equivalently, the shift in Joe’s data revealed by the positive controls of Part 
2), and we’ve determined that what’s driving Joe’s variation is that his thermocouple 
has been drifting more quickly than expected since its last scheduled calibration. Going 
forward, we’ll check our thermocouple calibrations more frequently, and we’ll replace 
Joe’s misbehaving thermocouple as well. Looking backward, what do we make of the 
last three months of Joe’s experiments?

If it turns out the thermocouple drift has been fast relative to the time between runs 
in each of Joe’s experiments, then each run has its own unique bias that cannot be 
completely removed by simply differencing or normalizing to a contemporaneous 
reference condition. We could, in this case, develop a more sophisticated way to 
process our data that accounts for the measured rate of thermocouple drift (and  
assumes it has been constant). But if we had never measured that rate by compiling 
our positive controls in the first place, the undetected thermocouple drift would  
confound our results, leading to higher rates of false positives and false negatives 
than we would predict from the random component of variation in Joe’s and Jane’s 
data. Those preventable false negatives would slow our R&D team’s progress. Those 
preventable false positives would keep consuming precious time and money until the 
day we stop complaining about our lab’s “reproducibility problem” and start dedicating 
more resources to solving it. 

If we can demonstrate that the rate of materially significant thermocouple drift has been 
slow relative to the time between the runs in each of his experiments, we can have some 
confidence that a simple differencing or normalization of the measurements within each 
experiment is correcting those data for the nonrandom and correlated variation attribut-
able to this nuisance factor. However, since there is always some amount of random and 
uncorrelated variation present in every measurement, we can never completely isolate 
the shift, drift or outlying variation in our positive controls from the signals in the rest of 
our experiment. Even when the normalization of data within experiments genuinely in-
creases the comparability of data between experiments, data that are unbiased to begin 
with will always generate higher signal-to-noise ratios than differenced or normalized data.
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It doesn’t matter if the random fluctuations within each experiment are small relative to 
its nonrandom bias. What matters is that these random fluctuations are small relative 
to the signals that, if detected, would move our R&D program substantially closer to its 
goals. When we don’t explicitly demonstrate that this is true, we can waste considerable 
resources running insufficiently powered experiments or chasing the random noise that 
is introduced specifically by normalizing our data against our positive controls. When the 
random variation in a single positive control happens to be positive, we may misinterpret 
all our experiment’s test conditions as disappointments. When the random variation in 
a single reference condition happens to be negative, we may conclude that whoever 
designed this week’s experiment is somehow smarter than whoever designed last week’s 
experiment. When we then fail to reproduce any of those promising results, those 
undeserved reputational differences may linger and bias important resourcing decisions 
that can’t wait for our statistical software to stop making bad predictions with the 
ineffectively normalized data we’ve been feeding it.
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Conclusion
Every detail of this article would remain relevant if we substituted Instrument, Day of the 
Week, Site or any number of other nominal factors everywhere that it currently reads 
Researcher. Regardless of which nuisance factor turns out to explain a surprising amount 
of the variation in our data tables – whether it’s a who, a what, a when or a where – too 
often we assume the noise in our data is normally distributed when it is not. In other 
words, too often we assume our research processes are sufficiently stable before we 
have invested the effort to make them so.

If we are already running one or more positive controls in every experiment we do, let’s 
make sure we are learning as much as possible from this significant commitment of our 
time and money. Here are the five keys to getting this right:

1)  Compile positive control data for all of our related research processes into a single 
data table that spans numerous experiments.

2)  At minimum, add columns to this data table that document who ran these positive 
controls, when they were run and where they were run (e.g., which reactor or 
instrument was used?). Record any other nuisance factors that could explain some 
of today’s observed variation, even if our ultimate goal is to develop processes that 
are independent of those factors.

3)  Use statistical software such as JMP to analyze our data as a function of both the 
factors we intended to study and those we didn’t. 

4)  Resist the urge to invent a new positive control with every experiment. Although 
we will still need to change our positive controls from time to time, we should take 
deliberate care to avoid changing our positive controls so often that we can no 
longer measure any materially significant effects of who, what, when or where on 
our experiments.

5)  Whenever an unexpected signal in our data is flagged as statistically significant, 
prioritize the investigation to determine its root cause. If necessary, negotiate an 
extension on the deadline for the next experiment. Sometimes these underappre-
ciated root causes can be identified in less than an hour! Even when it takes days 
to identify the root cause, this investment can save us weeks, if not months, of 
drawing the wrong conclusions from the work we do every day. Unless it’s already 
December, these investigations will almost always improve our chances of hitting 
our year-end targets for technology development, regardless of whatever delay 
they impart to next week’s previously scheduled experiment.

There’s just no substitute for detecting and addressing those root causes of the 
unexplained variation in our data tables! The first step is to stop thinking about our 
positive controls as something we do to normalize the results of each experiment and 
to start planning to use them to measure the day-to-day, week-to-week and month-to-
month stability of our various research processes.
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